AQA Chemistry

 $3Cu^{2+} + 2NO + 4H_2O$

7 Oxidation, reduction, and redox reactions Answers to practice questions

Question number	Answer	Marks	Guidance
1 (a)	a reducing agent gives electrons	1	This must not refer to electron pairs.
1 (b)	Zero	1	
1 (c) (i)	(+)3	1	You will always need to work out oxidation states so you need to
1 (c) (ii)	-3	1	practise them a lot.
1 (c) (iii)	-1	1	
1 (d) (i)	$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1	When you balance these equations and they are not
1 (d) (ii)	$2C^{I^-} \rightarrow CI_2 + 2e^-$	1	familiar always check that the numbers of atoms on each side
1 (d) (iii)	$PbO_2 + 4H^+ + 2CI^- \rightarrow$ Pb ²⁺ + Cl ₂ + 2H ₂ O	1	are the same and then go back and check that the net charge on each side is the same.
2 (a)	gains electrons	1	
2 (b) (i)	4	1	
	+6	1	
2 (b) (ii)	$Br_2 + 2e^- \rightarrow 2Br^-$	1	
2 (b) (iii)	$SO_2 + 2H_2O \rightarrow 4H^+ + SO_4^{2-} + 2e^-$	1	
2 (b) (iv)	$Br_2 + SO_2 + 2H_2O \rightarrow 2Br^- + 4H^+ + SO_4^{2-}$	1	You could have $H_2SO_4 + 2HBr$ on the right.
3 (a)	accepts electrons	1	
3 (b)	charge on the ion or element or atom	1	
3 (c)	+4	1	Remember to learn the oxidation states of the elements using the
	+5	1	periodic table to help you. Mg in Group 2 is always +2, O in Group
	-3	1	6 is –2, etc. (The elements that have variable oxidation states are often the ones asked for.)
3 (d) (i)	$Cu \rightarrow Cu^{2+} + 2e^{-}$	1	
3 (d) (ii)	$NO^{3^-} + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	1	
3 (d) (iii)	$3Cu + 2NO^{3-} + 8H^+ \rightarrow$	1	

AQA Chemistry

7 Oxidation, reduction, and redox reactions

Answers to practice questions

4 (a)	+2	1	N has variable oxidation states, but oxygen is −2 only.
	+5	1	
4 (b)	$NO^{3-} + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	1	When the question says 'in acid solution' just put H+ ions in on the left and balance them up at the end.
4 (c)	$Ag \rightarrow Ag^+ + e^-$	1	Even in this simple equation check that the charge on each side balances (in this case it is 0).
4 (d)	$NO^{3-} + 4H^+ + 3Ag \rightarrow NO + 2H_2O + 3Ag^+$	1	
5 (a) (i)	M1 0 M2 (+) 5	2	Accept Roman V for M2
5 (a) (ii)	$I_2 + 10HNO_3 \rightarrow 2HIO_3 + 10NO_2 + 4H_2O$	1	Accept multiples
5 (b)	M1 $IO_3^- + 6H^+ + 5I^- \rightarrow 3I_2 + 3H_2O$	2	For M1, ignore state symbols
	M2 NalO ₃ OR IO_3^- OR iodate ions OR iodate(V) ions etc		Credit multiples
	Accept "the iodine in iodate ions" but NOT "iodine" alone		Accept $2\frac{1}{2}I_2 + \frac{1}{2}I_2$ as alternative to $3I_2$
			Electrons must be cancelled
			For M2 Do not penalise an incorrect name for the correct oxidising agent that is written in addition to the formula.
			Accept "the iodine / I in iodate ions" but NOT "iodine" alone
5 (c) (i)	lodine OR I ₂	1	Insist on correct name or formula
5 (c) (ii)	$H_2SO_4 + 6H^+ 6e^- \rightarrow S + 4H_2O$ $SO_4^{2^-} + 8H^+ + 6e^- \rightarrow S + 4H_2O$	1	Ignore state symbols
			Credit multiples
			Do not penalise absence of charge on the electron
5 (d)	hydrogen sulfide OR H ₂ S OR hydrogen sulphide	1	

AQA Chemistry

7 Oxidation, reduction, and redox reactions

Answers	to	practice questions	
1		Ignore state symbols	I

5 (e) (i)	$Ag^+ + I^- \rightarrow AgI ONLY$	1	Ignore state symbols
			No multiples
5 (e) (ii)	The (yellow) precipitate / solid / it does not dissolve / is insoluble OR turns to a white solid OR stays the same OR no (visible/ observable) change OR no effect / no reaction	1	Ignore "nothing (happens)" Ignore "no observation
5 (e) (iii)	The silver nitrate is acidified to • react with / remove (an)ions that would interfere with the test • prevent the formation of other silver precipitates / insoluble silver compounds that would interfere with the test • remove (other) ions that react with the silver nitrate • react with / remove carbonate / hydroxide / sulfite (ions)	1	Ignore reference to "false positive" Do not penalise an incorrect formula for an ion that is written in addition to the name. If only the formula of the ion is given, it must be correct
5 (f) (i)	An <u>electron donor</u> OR (readily) <u>donates / loses / releases / gives</u> (away) electron(s)	1	Penalise "electron pair donor" Penalise "loss of electrons" alone Accept "electron donator"
5 (f) (ii)	$Cl_2 + 2e^- \rightarrow 2Cl^-$	1	Ignore state symbols Do not penalise absence of charge on electron Credit $Cl_2 \rightarrow 2Cl^- \cdot 2e^-$ Credit multiples
5 (f) (iii)	For M1 and M2, iodide ions are stronger reducing agents than chloride ions, because M1 Relative size of ions lodide ions / they are larger / have more electron levels(shells) (than chloride ions) / larger atomic / ionic radius OR electron to be lost/outer shell/level (of the iodide ion) is further the nucleus OR iodide ion(s) / they have greater / more shielding OR converse for chloride ion	2	Ignore general statementsGroup VII trends or abouthalogen molecules or atoms.Answers must be specificCE=0 for the clip if "iodine ions /chlorine ions QoLCE=0 for the clip if "iodide ionsare bigger molecules / atoms"QoLInsist on iodide ions in M1 andM2 or the use of it / they / them,in the correct context (or chloride

7 Oxidation, reduction, and redox reactions Answers to practice questions

AQA Chemistry	
---------------	--

M2 Strength of attraction for electron(s) The electron(s) lost / outer shell / level electron from (an) <u>iodide</u> ion(s) <u>less strongly held by the</u> <u>nucleus</u> compared with that lost from a <u>chloride</u> ion OR converse for a <u>chloride</u> ion	ions in the converse argument) Must be comparative in both M1 and M2